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Abstract. A family of self-affine surfaces is used to model the interface between a rough 
blocking electrode and an electrolyte. It is shown that the surface impedance scales as 
(iw)-” where the exponent p varies from 0 to 1. An expression for p is found in terms of 
the surface geometry. It is shown that p depends on both the Holder exponent, H, and 
the degree of sparseness of the structure. For surfaces whose structure is everywhere dense, 
or very sparse, this anomalous power-law behaviour is no longer seen. 

1. Introduction 

When an electrolyte is in contact with a smooth blocking electrode, the interface 
between them prevents the passage of ionic current. Under an AC voltage the interface 
behaves like a capacitance. The system can be modelled by the equivalent circuit of 
a surface impedance Z,, equal to l / i w C  where C is the surface capacitance, in series 
with a bulk electrolyte impedance Z,, 2, is usually a resistance. The total impedance 
can be written as 

Z ( w )  =Z,+ l/iwC. (1) 

However, as early as 1926 [ 11 an anomalous frequency dependence was discovered 
if the contact between the electrode and a solid electrolyte was rough. The impedance 
was given by 

Z ( w ) = Z e + K ( l / i w ) p  (2) 

where 0 < p < 1 and w is the angular frequency of the AC signal. 
This constant phase angle (CPA) dependence has been verified by a large number 

of subsequent workers: de Levie rediscovered this behaviour in 1963 [2] and later 
work on a range of solid electrolyte systems was performed by Bottelberghs and Broers 
[3] and Armstrong and Burnham [4]. Most recent studies have been carried out by 
Bates et al [5,6], who also looked at liquid electrolytes. Descriptions and reviews of 
further work can be found in [7-lo]. The experiments are very easily and accurately 
performed, and equation (2) was found to hold in many systems for up to 5 decades 
of frequency [3-61, with p varying from 0.39-0.98. Armstrong and Burnham realised 
that this was due to the roughness of the boundary and that p would depend on its 
geometry. They measured the impedance of p-alumina in contact with a gold electrode. 
They found that p decreased the rougher the electrode. When it was polished, p 
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approached 1. Since a power-law impedance is observed, it was reasonable to suggest 
that this could be derived from a fractal boundary withp related to the fractal dimension. 
This was done by Liu [ l l ]  and extended by Kaplan and Gray [12,13], who described 
the contact as an arrangement of parallel grooves. Halsey [ 141 considered the interface 
as a supposition of mountains and valleys of different sizes. Other theoretical 
approaches include the simple scaling arguments used by Nyikos and Pajkossy [15], 
which, unfortunately, produced results which were inconsistent with other treatments 
of the problem, while Sapoval has studied the behaviour of porous surfaces [ 161, Clerc 
et al [ 171 have modelled the experimental systems as Sierpinski gaskets, and Keddam 
and Takenouti [18] have calculated the impedance of a Koch curve. 

In [19] a renormalisation scheme is used to study the impedance of a large 
self-similar surface in contact with an electrolyte of low conductivity. However, in 
some recent experiments Bates et al [6] have studied a highly conducting liquid 
electrolyte, 0.1 M sulphuric acid, in contact with an electrode which was rough on 
scales less than 1 Fm. The geometry of the electrodes was characterised as self-affine. 

In this paper we shall calculate the impedance of a family of self-affine surfaces, 
which represent a generalisation of the model introduced by Liu [ll]. For surfaces 
where the structure is not everywhere dense we find CPA behaviour and obtain an 
analytical expression for p .  However, there is no direct relationship between p and 
other scaling exponents describing the geometry. This is in agreement with the con- 
clusion of [6]. For surfaces with dense structure, or with very sparse features, we no 
longer see an anomalous power-law impedance. 

2. Self-affine geometries 

Self-similar fractals are dilationally invariant. That is, a piece of the fractal resembles 
the whole, regardless of its orientation in space-it contains overhangs and features 
orientated in all directions. Other curves or surfaces may have structure over a wide 
range of length, but with the features aligned along a particular direction. They may 
be described by a single-valued height function h ( x ) .  The function is statistically 
invariant under the rescaling of axes x + cx and h + c for arbitrary c between upper 
and lower cutoffs. The Holder exponent, H, is an exponent describing the scaling 
properties of the curve and lies between 0 and 1. Such objects have a self-affine 
geometry [20]. The description can also be extended to patterns whose boundary is 
not necessarily single-valued, but which are invariant under the rescaling of axes given 
above. We shall not be concerned explicitly with such cases here. 

Imagine that we attempted to measure the arc length of such a curve with small 
yardsticks of length e. A unit range of x would be covered with l / e  such sticks. 
However, in each increment of size e, we expect typically a displacement h of order 
eH.  Hence the length of the curve, summed over l / e  such displacements, scales as 
e H - l .  The dimension d ,  of the interface is defined such that the apparent arc length 
scales as [20]. Hence 

d ~ = 2 - H .  (3) 
This is the dimension of the interface and not a quantity defined on an external border 
of the structure. Smooth curves have H and dH both equal to 1. 

Another statistical measure of H comes from the function S(A): 
S (  A) = (( h ( x + A) - h ( ~ ) ) ' )  (4) 
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where we average over x. Since on a self-affine curve an increment A in x represents 
a displacement A H  in h, we find 

S(A) - A ~ A  ( 5 )  
where d ,  equals 2H. 

Bates et a1 [6] measured the height of the electrode surface with a 0.5 p m  diameter 
diamond stylus, which resolved structure of size 0.04-1.0 pm.  The surface had been 
roughened by polishing with emery paper and alumina powder of varying grit size. 
S(A) was then measured and the results were consistent with a self-affine surface, with 
H close to 1 for the variety of electrodes studied. The surface impedance was then 
measured and values of p in the power law ( 2 )  were found in the range 0.78-0.97. 
However, no relation was found between the value of p and the exponent H. 

Liu [ 113 proposed a model of a rough surface for which he was able to calculate 
the surface impedance. A generalisation of the structure is shown in figure l (a) .  The 
surface is imagined as a succession of rectangular grooves: at the base of each groove 
lie b others of a width m times smaller. Figure l ( a )  illustrates the case b = 2 and 
m = 4. A surface is generated by extending the system of grooves in a plane perpen- 
dicular to the paper. The structure is self-affine with an exponent H. If the whole 
surface has a unit width, then at the j th  level of structure there are bJ grooves of width 
mPJ and height m-’H. For large j they will be much narrower than they are tall. In 
the figure only three hierarchies of grooving are shown; the model, in general, will be 
generated from a total of n iterations, where n may be large. Notice that, at each 
stage, large portions of the surface are completely flat. The surface is not everywhere 
rough. 

We can find d, and S(A) directly. The total arc length of the cross section of the 
surface will be dominated by the vertical sections. For the grooves at the j th  stage, 
this length will be of the order m-’,bJ. This is largest for the furthest stage of iteration 
which can be resolved. Thus for a probe seeing n stages, the size of the probe, e, is 
m-” and we obtain 

d H  = 1 - H + ln( b)/ln( m ) .  ( 6 )  

1 / m  
4+ 
1 / m 2  m.4 
e4 The number of branches, b ,  at 
1 / m 3  each stage = 2  

l / m  

1 /m2 m.4 

1 /m3 each stage.2 

c) 

+4 The number of  branches, b,  at 

Figure 1. ( a )  A self-affine model for a rough surface. The electrolyte lies in the black 
region. (6)  A self-affine model with dense structure. 
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This assumes that H<ln(b) / ln(m) .  For larger H, the largest grooves make the 
dominant contribution to the arc length and we find, simply, that dH = 1. 

To find S(A) we note that at the j th  iteration we have b' jumps of size m-Hj. This 
gives us, for the smallest grooves dominating the average, 

d ,  = 1 + 2 H  -in( b)/ln( m). ( 7 )  
This requires that ln(b)/ln(m) > 2H. Outside this region we find d, = 1 as S(A) is 
dominated by the discontinuity in h at the edge of the largest groove. However (7) is 
recovered if we allow each groove to have sloping sides. We shall introduce the model 
that the top of each groove is wider than the base by a small but finite fraction. 

Notice that the laws, equations (6) and ( 7 ) ,  are not consistent with equations (3) 
and ( 5 ) ,  respectively. The scaling analysis assumed we had a surface where the structure 
was everywhere dense. Figure l ( b )  shows a boundary where this is the case. At a 
stage j we now have bmj-' grooves distributed everywhere along the surface-if the 
total number of iterations, n, is very large, there are only tiny regions of flat interface. 
For this model, if we introduce the refinement of slightly sloping sides, to remove the 
discontinuities in h ( x ) ,  then we find values of dH and d, consistent with (3) and ( 5 ) ,  
respectively. 

Liu [ 1 11 studied the structure in figure 1 ( a )  where H = 0. In his paper the dimension 
of the surface was given by (6) with H = 0. 

3. An equivalent circuit analysis 

The models proposed above are a crude model of a surface which has been scratched 
to reveal pits and grooves of many sizes. We are able to calculate the surface impedance, 
Z, using an equivalent circuit representation. We assume that the interface between 
the electrolyte and the electrode has a purely capacitive impedance. The electrode is 
at zero potential. Figures 2 ( a )  and 2(b) show the equivalent circuits for the models 
illustrated in figures l ( a )  and l (b )  respectively. It is then possible to write down the 
impedance of the surface as a continued fraction. At the zeroth stage the total 
impedance of the sides of the groove is taken to be I / i o C  and the electrolyte contained 

I 

Figure 2. ( a )  An equivalent circuit for the impedance of the surface shown in figure l (a) .  
( b )  An equivalent circuit for the structure shown in figure l (b) .  
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within the groove has a resistance 2,. At the j th  stage the groove is mHJ times shorter 
and mJ times narrower than the original. Hence the capacitance of the sides will be 
Cm-Hj and the electrolyte resistance will be Zemj('-H). Because the grooves after 
several stages are very narrow, the contribution to the capacitance at each stage from 
the exposed ends is ignored. For figure 2(a)  we find, using the usual rules for the 
addition of impedances in series and in parallel, 

1 
b 

Z = Ze+ 
i w C  + 

1 
b 

m'-HZe+ 
iwCm-H + 

and for figure 2( b) 

1 z=z,+ 
b f b  - l l l m  - b )  

where the continued fractions have been written up to the third stage of iteration. 

discussion of the circumstances in which it is valid. 
The appendix contains a justification of the equivalent circuit analysis and a 

4. Calculations 

Kaplan and Gray [12] used an elegant analysis to show that CPA behaviour could be 
observed from the impedance Z written out in equation (8), in the case H = 0. Here 
we shall extend the method for any H and for both the fractions given in equations 
(8) and (9). If we write 

(10) 
1 

iwC + Z ' ( w )  
Z(0 )  = ze+ 

then it is easy to see that if we set w ' =  
for an infinite number of stages, 

then, if the fraction in (8) is continued 

Z ' ( w )  = bmH'-'/Z(w'). (11) 

This enables us to derive the exact relation: 

1 
iwmZH-'C + bmH-'/Z(w)'  

Z( wm2H-1 ) = Ze+ 

We shall now attempt to find solutions for 2 consistent with Z ( w )  - (iw)-p with 
O s p  s 1, in the limit of small w. Then I l /Z (w) l>>  w C  and I Z ( w ) l > >  2, and so approxi- 
mately 

Z(wm2H-' ) =Z(w)m'-H/b.  (13) 
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This has a solution if 
m ~ ( l - 2 H )  = ml-H/b. 

We find 
1 -H-ln(b) / ln(m) - 

1-2H P =  

This gives p between 0 and 1 for H S 0.5 where 1 - H 5 In( b)/ln( m) 5 H. Outside this 
range we can only have consistent solutions for p = 0 or 1. This equation was derived 
by Liu for the case H = 0. 

Equation (15) immediately enables us to support the conclusion of the experimental 
work of Bates er a1 [ 6 ] :  the exponent p and the scaling properties of the surface are 
not simply related. This is easily demonstrated for the model shown in figure l(a) 
with b = 2 and m = 4. In this case p = 0.5, independent of H. The impedance behaviour 
for surfaces with a finite number of iterations, calculated numerically from equation 
(8), is shown in figures 3(a )  and 3(b) for the cases H = 0 and H = 0.3, respectively. 
We have plotted log[-w Im(Z)] against log(w); then, capacitive behaviour is represen- 
ted by a horizontal line on the graph and CPA behaviour is shown by a straight line 

10-21 f , ,  , ,  , ,  1 
( a  I 

IO' 
10-8 10-4 1.0 

1.0 j /- t 

I 

t 
t 

I IO, , , , , , ' , b )  

10-8 10 

W 

Figure 3. -w Im(Z) is plotted against w on a logarithmic scale, where w is the frequency 
and Z is the complex impedance of the surface illustrated in figure l ( a )  with various stages 
of iteration, n = 1-10, as indicated on the graphs. In these graphs and figures 4-7, w and 
Z are measured in units of l/(Z,C) and Z,, respectively. CPA behaviour is indicated by 
a straight line of slope 1 -p. ( a )  H = 0. We find that p = O S .  ( b )  H = 0.3. Again p = O S .  
The values of p are consistent with equation (15). 
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of slope 1 - p .  An impedance behaviour independent of frequency is indicated by a 
slope of 1. Notice that the impedance is extremely sensitive to surface roughress-even 
a few hierarchies of grooves generates a power-law over a wide spectrum of frequency. 

However, it is also apparent that our analysis breaks down when H exceeds 0.5 
or the value of p computed from (15) lies outside the range from 0-1. In such a case 
we cannot observe an exact CPA law as we increase the number of iterations to infinity. 
If ln(b)/ln(m) is greater than 0.5, then as we increase H from zero, p decreases to 
zero when H = 1 -ln(b)/ln(m). In this case we have many branches on the structure. 
Increasing H allows more hierarchies of branching to be probed by the same length 
of path through the electrolyte. Thus the surface appears to have an extremely large 
area. For a capacitive interface the impedance varies as the inverse of the surface 
area, and so the bare boundary makes an very small contribution to the overall 
impedance-it is now governed by the electrolyte resistance and is almost independent 
of the frequency. This is illustrated for the case b = 2 and m = 3. In figure 4 ( a )  we 
have H = 0.3 and we find p = 0.173; in figure 4 ( b )  H is 0.4. Here when the impedance 
departs from capacitive behaviour, we no longer see an exact power law: the graph 
has an approximate slope equal to 1, which indicates that the impedance is nearly 
independent of frequency. 

lo-' 

IO-) 

 IO-^ 

IO-' 

/ t 

10-10 10-6 

W 

Figure 4. -U I m ( 2 )  is plotted against w on a logarithmic scale for a surface similar to 
that illustrated in figure l (a) ,  but with b = 2 and m = 3, and for various stages of iteration, 
n = 30-40, as indicated on the graphs. ( a )  H = 0.3. We find CPA behaviour with p 
approximately equal to 0.17. ( b )  H = 0.4. We no longer see an exact power-law behaviour. 
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When ln(b)/ln(m) is less than 0.5, the branches are sparse and, as we increase H, 
p increases to reach 1 (normal capacitive behaviour) when H = ln(b)/ln( m) .  In this 
case, the number of smaller sub-branches is insufficient to make a significant contribu- 
tion to the impedance. For a surface with a large number of iterations, this is equivalent 
to truncating the continued fraction after a fixed, finite number of stages. Thus surfaces 
generated with different numbers of iterations have approximately the same capacitive 
impedance at low frequency. This is illustrated in figure 5 where b = 2 and m = 6. In 
figure 5(a) ,  H = 0.3 and we see CPA behaviour with p equal to 0.783. When H = 0.4 
(figure 5 ( b ) )  we can see that we no longer have a power-law impedance, and that 
2 - l / i w C  for small w, even within the range where a CPA law was seen for H = 0.3. 
Viewing the full range of w in figures 4 and 5 is perhaps of mathematical interest only, 
since no real surface is likely to contain structure over the range of lengths pertinent 
for 30 stages of grooves, but the figures do demonstrate the destruction of the CPA law 
for non-zero H. 

The case ln(b)/ln( m )  = 0.5 is critical, with an approximate power-law impedance 
with p = 0.5 seen over a very restricted range of lengths for H greater than 0.5, as 
shown in figure 6, where m = 4, b = 2 and H = 0.7. 

1.0 

10-2 

- 1 0 - ~  ru - 
E 
I 

3 

t 

,b"5 Ib-la 1 .o 

10-l 4 

l b )  1 
10-2 , 

I O +  I O  

W 

Figure 5. -U Im(Z) is plotted against w on a logarithmic scale for a surface similar to 
that illustrated in figure l ( a )  but with b = 2  and m =6,  for various stages of iteration, 
n =30-40, as indicated on the graphs. ( a )  H=0.3.  We find CPA behaviour with p 
approximately 0.78. ( b )  H = 0.4. We no longer see an anomalous power-law behaviour-for 
most of the frequency range a simple capacitive impedance is observed. 
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10-8 1 0 - ~  1.0 

w 

Figure 6. The graph is similar to figures 3-5 above, but here m = 4, b = 2 and H = 0.7. 
Notice that only an approximate power-law impedance is observed over a restricted range 
of frequency. 

Thus for surfaces with fairly sparse structure we see CPA behaviour-if it is too 
sparse, the impedance approximately resembles that for a smooth interface and if it 
is too dense the large surface area gives us an impedance independent of frequency. 
In these two regimes an approximate power-law behaviour with p between 0 and 1 
may be seen, as in figure 6 ,  over a very restricted range of frequency-usually covering 
only about a decade of frequency, unless we have carefully chosen parameters, which 
would not explain the many experiments where a CPA law over 5 decades of w was 
observed. 

5. Impedance for models with dense structure 

From the discussion above we now expect that the model with structure which is 
everywhere dense will not give us a CPA law. The interface will present a very large 
area to the electrolyte and so we shall have an overall impedance which is very small. 
We can repeat an analysis identical to that previously for the continued fraction in 
(9). After some algebra, the effects of the parameters m and b disappear (as they did 
in the calculation of dH and d A ) .  Then we find possible solutions for Z ( w )  - (iw)-p if 

p = ( 1  -H)/(1-2H) (16) 

or 

p = -H/(1-2H). 

There are no consistent solutions for 0 < p < 1 if 0 6 H 6 1. 
In fact, in all cases the total impedance only makes a small correction to the 

resistance of the original groove. The impedance of the electrolyte is now larger than 
that of the rough surface it surrounds. Figure 7 shows log[ lZ( U ) \ -  Z,] plotted against 
log(o), where 2, is the resistance of the zeroth groove and Z ( w )  is calculated 
numerically from (9). It can be seen that, after several stages of iteration, the impedance 
makes just a small correction to Z , ,  which is independent of frequency, except for 
exceptionally small w where we recover normal capacitive behaviour. 
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i t 
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IO4  3 L 

10-4 1 I 10 I 
I I I 

10-8 1.0 

w 

Figure 7. The impedance of a self-affine surface with dense structure. The difference 
between the modulus of Z, and Z,, the resistance of the electrolyte at the zeroth iteration 
(which is taken to be unity), is plotted against frequency, o, on a doubly logarithmic scale. 
Equation (9) is used to calculate the impedance of the structure shown in figure l ( b ) ,  with 
H = 0.5 and with various stages of branching, n = 1-10, as indicated on the graph. Notice 
that, for models with many stages of branching, the total impedance is independent of 
frequency and makes a small correction to Z, ,  except at extremely small w. 

However, in the experiments of Bates et a1 [6], and most probably much of the 
work on solid electrolytes, the surface impedance was large compared with that for 
the electrolyte contained within the surface irregularities. If this is not the case a 
renormalisation scheme to calculate the impedance may be more appropriate than the 
analysis given here [ 191. 

6. Fully three-dimensional models 

We can also model a fully two-dimensional surface, where each groove, instead of 
being extended indefinitely in a plane perpendicular to the cross sections illustrated, 
has a length equal to its width (m- j  at the j t h  stage of iteration). b again represents 
the number of new grooves, or holes, generated at each stage. For a dense structure 
we now must have of order m2j branches at stage j .  A repeat of the analysis above 
yields similar results: we do not see a CPA law for dense branching, but for a surface 
similar to that shown in figure l (a) ,  we obtain, instead of equation (15), 

2 - H -In( b)/ln( m )  
1 - 2 H  P =  

with solutions for H < 0.5 and 2 - H 3 In( b)/ln( m )  2 H. 

7. Conclusions 

We can now present a clear physical picture of the impedance of self-affine surfaces. 
We observe CPA behaviour for surfaces whose structure is sparse. That is, most of the 
surface is smooth when viewed at a fine resolution, with the grooves distributed along 
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the interface. We calculate the impedance by considering the various current paths to 
the electrode. At each stage of branching, there are routes to the electrode across 
smooth capacitive portions of surface as well as routes through the electrolyte to 
smaller sub-branches. The total impedance is very sensitive to surface roughness, with 
a power-law behaviour observed over a wide range of frequencies for only a small 
number of stages of structure. The exponent p is not simply related to the scaling of 
the geometry of the interface, H. Depending on the structure, p may increase, decrease 
or remain constant on the variation of H with all other parameters remaining constant. 
p is dependent on both H and the degree of sparseness of the structure, which is 
measured by the ratio In( b)/ln( m) .  If the features are dense along the boundary, then 
the very large number of branches causes a considerable reduction in the impedance 
from an interface with fewer grooves. For interfaces sufficiently dense with grooves, 
which includes all boundaries which are everywhere rough except on the scale of the 
finest features, the surface impedance becomes independent of frequency and makes 
only a small correction to the overall resistance of the electrolyte contained by the 
surface irregularities. Then we no longer see CPA behaviour. 

The calculation of a CPA law in this paper is applicable to an electrode with sparse 
small-scale unevenness surrounded by a medium with a large conductivity. This is 
likely to be the case for electrodes which are made rough by scratching grooves on 
the surface. Moreover, Kaplan and Gray [12] demonstrated that a random surface, 
with the branching ratio, b, and the change in scale, m, different at each iteration, still 
gave a power-law behaviour, although they only studied the case H = 0. Further work 
on these surfaces demands a more detailed independent characterisation of the 
geometry. In particular, for boundaries whose structure is not everywhere dense, the 
exponents H, dA and dH are unlikely to be simply related. The experiment of Bates 
et a1 [ 6 ]  only inferred d A  from an analysis of the surface geometry over a small range 
of size. It is not clear that the results would be unaltered if a more sensitive probe 
were used to investigate the surface, or indeed, especially for boundaries with a sparse 
structure, that dA is a good reliable measure of the interfacial unevenness. One test is 
to make a contour map of a typical portion of the electrode, perhaps using scanning 
tunneling electron microscopy, and then calculate the impedance numerically for that 
surface. This hopefully should agree with an experimental determination and would 
show that CPA behaviour is governed sensitively by the surface geometry. 
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Appendix. Justification of the equivalent circuit analysis 

Although the representation of the impedance as a continued fraction is very appealing 
and allows 2 to be calculated directly, it is necessary to consider under what conditions 
the analysis is valid. No justification was offered in the Liu paper. 

Figure A1 shows an attempt at a solution for 4, the potential in a single groove, 
at the zeroth stage, of width 2X and depth Y ( Y > X ) ,  whose sides have a total 
impedance l / iwC with a constant end impedance Zend. On the boundaries of the 
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2oXZe,, a'p I by E - cp 

y=Y 

v2cp = o  

Y 
y=o c 

X s - x  x - 0  x .x 

Figure A l .  A solution for the electrostatic potential in an inverted groove. The potential 
obeys Laplace's equation and the boundary conditions indicated. 

groove, the normal current density is (+ &plan. U is the electrolyte conductivity and 
a4/an the electric field normal to the surface. The current density also equals 4 / z s ,  
where z, is the surface impedance for unit area (or unit length in this two-dimensional 
calculation). This gives us a surface boundary condition: 

u = 4 / z s .  ( A l l  

We can find a solution for 4 in two limits. 
(i) \wCZel<< 1 .  This means that the electrolyte impedance in the groove is much 

smaller than that of the surface. The potential varies slowly within the groove and the 
electric field penetrates all parts of the structure. We write 

4 = (bo[ 1 - c,y+ c*(y2 - x2) +. . .] (A21 

where /c2Y2j<< Icl Yl<< 1 .  The coefficients c1 and c2 are found by applying boundary 
conditions of the form of equation ( A l )  on the boundary of the groove (see figure A l ) .  

Then we define the impedance of the whole structure as 

where the derivative is evaluated at y = 0. 
The condition / c l  YI << 1 implies that lZel << I Z e n d /  and /c2 Y 2 /  << /cl  Yl means /wCZel<< 1 .  
We find 

where Ze= Y / 2 u X  and is the resistance of the electrolyte within the groove. If the 
equivalent circuit were valid we would find 

('45) 1 Z e  l+-+iwCZe . Zend Z =  
1 + iwczend ( Z e n d  

The two expressions are only equivalent if IwCZe/ is much less than 1. 
The analysis is still valid for a groove with slightly sloping sides, with Ze and C 

again representing the total electrolyte resistance and surface capacitance respectively. 
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We have still not solved for an impedance at the bottom of the groove which varies 
with position-if the change in scale at each iteration is large, then we still believe the 
analysis to be accurate, with Zend representing the total impedance of the sub-branches 
added in parallel, with the variation in impedance for unit length only affecting C$ on 
scales much smaller than the overall size of the groove. 

(ii) IwCZel >> 1.  In this case the electrolyte resistance dominates and the electric 
field fails to penetrate the structure. 

We write a solution: 

C$ = q50 exp( -cy)  cos( cx) (A61 

where /CY/  >> 1. 
The boundary condition on the sides of the groove reveals that 

c tan( c x )  = iwCZ,X/ y2 (A7) 

c2 Y’ = iwCZe (A81 

z = Z,/CY (‘49) 

and if IcX/<< 1 we find 

and the overall impedance Z, from equation (A3) is 

which is smaller than Z, and independent of Zend, i.e. the smaller grooves arranged 
at the base. The equivalent circuit analysis is no longer valid. 

In this analysis the conditions IcXl<c 1 and ICY/ >> 1 mean that Y2/X2 >> IwCZel. 
This condition is also satisfied for thin grooves when loCZel is small. 

As we consider further stages of iteration the grooves become relatively thinner, 
increasing the overall resistance of the electrolyte contained in the grooves. For the 
j th  stage of iteration the equivalent circuit representation will only be valid for 
I cz, j (  1 -2 H ) I<< 1 .  We assume that at the zeroth stage IwCZ,/ is small. Then there 
are two cases to be considered. 

(i) H > f. The condition IwCZemj(1-2H)  I << 1 always holds and the equivalent circuit 
analysis is valid to all orders of iteration. The electric field penetrates all sections of 
the structure. This means that the field probes an extremely large surface and leads 
to an overall impedance that is very small. We shall show that, in this case, we do 
not see CPA behaviour. 

(ii) H < i .  It is clear that, as we increase j ,  the condition IwCZemJ(1-2H)I<< 1 will 
no longer hold: at small scales the electrolyte resistance is larger than the surface 
impedance. The electric field will eventually become unable to penetrate the small 
thin surface irregularities. As we vary the frequency different hierarchies of structure 
are probed. For a fractal surface we shall show that this can lead to a power-law 
relation between the impedance and w and we do see CPA behaviour in some cases. 

Therefore, when we consider the impedance of a surface with many stages of 
branching and H < f  the equivalent circuit analysis is valid for j iterations until 
IwCZem’(1-2H)I > 1.  The flux does not penetrate the smaller grooves and so the fractions 
(8) and (9) are effectively terminated at this j th  stage. This relates a spatial length 
scale on the surface with a frequency cutoff for CPA behaviour. However, an 
examination of equations (8) and (9) reveals that when IwCZem’(1-2H)I >> 1 the contribu- 
tion to the fraction from larger j is negligible. Thus the fraction naturally terminates, 
albeit in a different manner, at the stage when the equivalent circuit representation is 
no longer applicable. This indicates that (8) and (9) do give an adequate representation 
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of the surface impedance for all frequencies, U, if Y z / X 2  >> loCZ,mJ('-zH)I. However, 
a note of caution is needed here. The analysis can only investigate the impedance of 
a surface composed of tall thin grooves. The experiments of Bates et a1 [6], in contrast, 
indicated that on the largest scales the electrolyte surface consisted of only gently 
undulating structure. It is clear that eventually any self-affine surface would appear 
steep at a sufficiently fine resolution but, unfortunately, this could not be resolved by 
the probe used. 

References 

[l]  Wolff I 1926 Phys. Rev. 27 755 
[2] de Levie R 1965 Electrochimica Acta 10 113 
[3] Bottelberghs P H and Broers G H J 1976 J. Electroanal. Chem. 67 155 
[4] Armstrong R D and Burnham R A 1976 J. Electroanal. Chem. 72 257 
[5] Bates J B, Wang J C and Chu Y T 1986 Solid State Ionics 18/19 1045 
[6] Bates J B, Chu Y T and Stribling W T 1988 Phys. Reo. Lett. 60 627 
[7] Raistrick I D 1986 Solid State Ionics 18/19 40 
[8] Scheider W 1975 J. Phys. Chem. 79 127 
[9] Brug G J, Van Den Eeden A L G ,  Sluyters-Rehbach M and Sluyters J H 1984 J. Electroanal. Chem. 

176 275 
[lo] Bruinink J 1974 J. Electroanal. Chem. 51 141 
[ l l ]  Liu S H 1985 Phys. Rev. Lett. 55 529 
[12] Kaplan T and Gray L J 1985 Phys. Reo. B 32 7360 
[13] Liu S H, Kaplan T and Gray L J 1986 Solid State Ionics 18/19 65 
[14] Halsey T C 1987 Phys. Reo. A 35 3512 
[15] Nyikos L and Pajkossy T 1985 Electrochimica Acta 30 1533 
[16] Sapoval B 1987 Solid State Ionics 23 253 
[ 171 Clerc J P, Tremblay A-M S,  Albinet G and Mitescu C D 1984 J. Physique Lett. 19 913 
[18] Keddan M and Takenouti H 1986 C.R. Acad. Sci. Ser. 2 302 281 
[19] Ball R C and Blunt M J 1988 J. Phys. A :  Math. Gen. 21 197 
[20] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman) 


